Exercises

Optimization with side constraints - Solutions

Exercise 1.

1. The Lagrange function is

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}+2 x_{2}+1000+\lambda\left(x_{1}+x_{2}-80\right)
$$

and thus the partial derivatives are

$$
\frac{\partial}{\partial x_{1}} \mathcal{L}=x_{1}+\lambda \quad \frac{\partial}{\partial x_{2}} \mathcal{L}=2 x_{2}+2+\lambda \quad \frac{\partial}{\partial \lambda} \mathcal{L}=x_{1}+x_{2}-80
$$

Solving $\nabla \mathcal{L}=0$ yields the following equations

$$
\begin{aligned}
x_{1} & =-\lambda \\
x_{2} & =-1-\frac{\lambda}{2}=1+\frac{x_{1}}{2} \\
x_{1}+x_{2} & =80
\end{aligned}
$$

Combining all equations gives

$$
x_{1}-1+\frac{x_{1}}{2}=80 \Leftrightarrow \frac{3}{2} x_{1}=81 \Leftrightarrow x_{1}=54
$$

and thus

$$
x_{2}=26 \text { and } \lambda=-54 .
$$

Thus $(54,26)$ is a (possible) extreme point.
2. The Lagrange function is

$$
\mathcal{L}(x, y, z, \lambda)=x+y+z+\lambda(x y z-8)
$$

and thus the partial derivatives are

$$
\frac{\partial}{\partial x} \mathcal{L}=1+\lambda y z \quad \frac{\partial}{\partial y} \mathcal{L}=1+\lambda x z \quad \frac{\partial}{\partial z} \mathcal{L}=1+\lambda x y \quad \frac{\partial}{\partial \lambda} \mathcal{L}=x y z-8
$$

Solving $\nabla \mathcal{L}=0$ yields the following equations

$$
\begin{aligned}
\lambda y z & =1 \\
\lambda x z & =1 \\
\lambda x y & =1 \\
x y z & =8
\end{aligned}
$$

Thus in particular $y z=x z=x y$ from which we can infer $x=y=z$ (since $x, y, z \neq 0$ by the last equation). With the last equality we thus get $x^{3}=8$ and thus $x=y=z=2$.
The point $(2,2,2)$ is the only (possible) extreme point in this case.
3. The Lagrange function is

$$
\mathcal{L}(x, y, \lambda)=5 x+8 y+\lambda(x y-100)
$$

and thus the partial derivatives are

$$
\begin{aligned}
\frac{\partial}{\partial x} \mathcal{L} & =5+\lambda y \\
\frac{\partial}{\partial y} \mathcal{L} & =8+\lambda x \\
\frac{\partial}{\partial \lambda} \mathcal{L} & =x y-1000
\end{aligned}
$$

Solving $\nabla \mathcal{L}=0$ yields the following equations

$$
\begin{aligned}
\lambda & =-\frac{5}{y} \\
\lambda & =-\frac{8}{x} \\
x y & =1000
\end{aligned}
$$

The first two equations yields

$$
\frac{5}{y}=\frac{8}{x} \Leftrightarrow \frac{y}{5}=\frac{x}{8} \Leftrightarrow y=\frac{5 x}{8}
$$

and this we get with the last equation

$$
x \cdot \frac{5 x}{8}=1000 \Leftrightarrow x^{2}=1600 \Leftrightarrow x= \pm 40
$$

and we get $y=\frac{5 x}{8}= \pm 25$. So $(40,25)$ and $(-40,-25)$ are the possible extreme points.

Exercise 2.

1. We want to solve the optimization problem

$$
\begin{array}{r}
\max f\left(x_{1}, x_{2}\right)=120 \sqrt{x_{1}}+160 \sqrt{x_{2}} \\
\text { s.t. } x_{1}+x_{2}=4 \cdot 10^{6}
\end{array}
$$

The Lagrange function is

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=120 \sqrt{x_{1}}+160 \sqrt{x_{2}}+\lambda\left(x_{1}+x_{2}-4 \cdot 10^{6}\right)
$$

and thus the partial derivatives are
$\frac{\partial}{\partial x_{1}} \mathcal{L}=60 \frac{1}{\sqrt{x_{1}}}+\lambda \quad \frac{\partial}{\partial x_{2}} \mathcal{L}=80 \frac{1}{\sqrt{x_{2}}}+\lambda \quad \frac{\partial}{\partial \lambda} \mathcal{L}=x_{1}+x_{2}-4 \cdot 10^{6}$
Solving $\nabla \mathcal{L}=0$ yields the following equations

$$
\begin{aligned}
\lambda & =-60 \frac{1}{\sqrt{x_{1}}} \\
\lambda & =-80 \frac{1}{\sqrt{x_{2}}} \\
\mathrm{x}_{1}+\mathrm{x}_{2} & =4 \cdot 10^{6}
\end{aligned}
$$

The first two equations yield

$$
60 \frac{1}{\sqrt{x_{1}}}=80 \frac{1}{\sqrt{x_{2}}} \Leftrightarrow \sqrt{x_{1}}=\frac{3}{4} \sqrt{x_{2}} \Leftrightarrow x_{1}=\frac{9}{16} x_{2}
$$

Thus we get

$$
\frac{9}{16} x_{2}+x_{2}=4 \cdot 10^{6} \Rightarrow x_{2}=2.56 \cdot 10^{6} \Rightarrow x_{1}=1.44 \cdot 10^{6}
$$

and $\lambda=-60 \cdot \frac{1}{\sqrt{x_{1}}}=-0.05$.
2. If the capital changes by $\Delta x=-100000$. Thus the profit approximatively changed by

$$
\Delta \mathrm{P} \approx-\lambda \Delta x=-(-0.05)\left(-10^{5}\right)=-5000
$$

